基于支持向量机的抗噪语音识别  被引量:7

Noise-Robust Speech Recognition Based on Support Vector Machine

在线阅读下载全文

作  者:白静[1] 张雪英[1] 

机构地区:[1]太原理工大学信息工程学院,山西太原030024

出  处:《太原理工大学学报》2009年第1期11-14,共4页Journal of Taiyuan University of Technology

基  金:国家自然科学基金资助项目(60472094);山西省自然科学基金资助项目(2008011031);山西省高校科技研究开发项目(2007113);太原市大学生创新创业专项(08122037)

摘  要:阐述了支持向量机的分类机理,采用改进的MFCC语音特征参数,用基于不同核函数的支持向量机(SVM)作为语识别网络,对SVM多类分类问题采用"一对一"分类算法,实现了一个孤立词非特定人中等词汇量的抗噪语音识别系统。通过实验,得到了不同核函数下的识别结果;分析了核参数和误差惩罚参数对SVM推广能力的影响,并将实验结果同基于RBF神经网络的识别结果进行了比较。The classification principle of support vector machine was elucidated. Using improved MFCC speech characters and taking different kernel function based support vector machine as the recognition network for speech recognition system, a one-against-one method for multi-class support vector machine was adopted to realize a noise-robust speech recognition system for isolated words, non-specific person and middle glossary quantity. By experiments, the recognition results based on different kernel functions were obtained, the influences of the kernel parameter and the error penalty parameter on support vector machine's generalization ability were analyzed, and the different kernel based SVM speech recognition correct rates were compared with these obtained using RBF network in different SNRs.

关 键 词:支持向量机 核函数 多类分类算法 语音识别 

分 类 号:TN912[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象