检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学进展》2008年第6期657-669,共13页Advances in Mathematics(China)
基 金:国家自然科学基金(No.10671087);江西省自然科学基金(No.0511008);江西省教育厅科技项目
摘 要:设x:M→S^(n+1)是(n+1)-维单位球面上不含脐点的超曲面,在S^(n+1)的Mbius变换群下浸入x的四个基本不变量是:一个黎曼度量g称为Mbius度量;一个1-形式φ称为Mbius形式;一个对称的(0,2)张量A称为Blaschke张量和一个对称的(0,2)张量B称为Mbius第二基本形式.李海中和王长平研究了满足如下条件的超曲面x:M→S^(n+1):(i)φ=0;(ii)存在可微函数λ和μ使A+λg+μB=0,他们证明了λ和μ都是常数,并且给出了这类超曲面的分类.对称的(0,2)张量A+λB也是Mbius不变量,称为浸入x的仿Blaschke张量,其中λ是常数.因此李海中和王长平也就在φ=0的条件下给出了A+λB的特征值全相等的超曲面x:M→S^(n+1)的分类.本文对S^4中满足以下条件的超曲面进行完全分类:(i)φ=0,(ii)对某一个常数λ,A+λB具有常数特征值.Let x : Mn → S^n+1 be a hypersurface in the (n+l)-dimensional unit sphere S^n+1 without umbilics. Four basic invariants of x under the Moebius transformation group in S^n+1 are a Riemannian metric g called MSbius metric, a 1-form Φ, called M6bius form, a symmetric (0,2) tensor A called Blaschke tensor and symmetric (0, 2) tensor B called Moebius second fundamental form. Li and Wang have studied the hypersurfaces x : M^n→S^n+1, which satisfy: (i) Φ = 0, (ii) A + λg + μB = 0 for some functions A and it on M, they have proved that λ and μ must be constants and have classified the hypersurfaces. A + λB is a symmetric (0,2) tensor and a MSbius invariant, where A is a constant, A + λB is called Parablaschke tensor of x. So under the condition Φ = 0, Li and Wang have classified the hypersurfaces x : M^n→ S^n+1 in which the prarblaschke tensor have the same eigenvalues. In this paper, We classify the hypersurfaces x : M→S4, which satisfy: (i) Φ = 0, (ii) A +λB has constant eigenvalues for some constants λ.
关 键 词:Moebius度量 MOEBIUS形式 Moebius第二基本形式 BLASCHKE张量 仿Blaschke张量
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.36.122