多项式乘除法的矩阵实现  被引量:1

Matrix Achievement of Polynomial Multiplication and Division

在线阅读下载全文

作  者:张作泉[1] 李琦[1] 

机构地区:[1]北京交通大学理学院,北京100044

出  处:《北京交通大学学报》2008年第6期62-64,共3页JOURNAL OF BEIJING JIAOTONG UNIVERSITY

基  金:北京市教委教学改革项目资助(43007)

摘  要:矩阵是线性代数中的一个很重要的概念,矩阵一切的深刻性质和重要应用都源自于矩阵的乘法.该文首先引进了一个多项式系数矩阵的概念,然后巧妙地将多项式的乘法转变为矩阵乘法的运算,得到了一个定理,步骤清晰,计算简单.与此同时,对多项式的除法在一定条件下也作了较为深入的分析,获得了类似的结论,同样在计算上带来了很大的方便.Matrix is a very important concept in linear algebra. All of its profound nature and important application are derived from the matrix multiplication. In this paper, introduces firstly a concept of polynomial coefficient matrix, and then the polynomial multiplication is masterly changed into the computing of matrix multiplication. Then a theorem is received. Throughout the process, the steps are very clear and the calculating is pretty simple. At the same time, the polynomial division, under certain conditions, is also made a more in-depth analysis and accessed to a similar conclusion. Similarly, the great convenience has been brought from the calculation.

关 键 词:矩阵 矩阵乘法 多项式乘法 多项式除法 

分 类 号:F830.591[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象