基于小波神经网络的非线性负载功率预测  被引量:7

Forecasting for non-linear load power based on wavelet and ANN

在线阅读下载全文

作  者:石彦辉[1] 高蒙[1] 邸建红[1] 刘宁宁[1] 胡立强[1] 

机构地区:[1]石家庄铁道学院电气与电子工程学院,石家庄050043

出  处:《电测与仪表》2008年第12期8-11,共4页Electrical Measurement & Instrumentation

基  金:河北省科技厅科研计划资助项目(06213507D)

摘  要:针对高校公寓现用的电能表计量方案不具备负载自动识别的功能,提出了一种基于小波变换与BP神经网络相结合的非线性负载功率预测的方法。先采用Dmeyer小波函数对用户负载电流波形分解,提取表征非线性负载类型的参数值。然后建立三层BP神经网络模型,并采用L-M算法进行网络训练与预测,实现公寓的负载识别功能。研究结果表明,小波BP神经网络公寓负载识别方法具有可靠性和实用性,实现了学生公寓的用电管理现代化,对消除校园火险隐患具有重大意义。A method of forecasting for non-linear load power based on combination of Wavelet with BPNN is presented in the paper, because the current electric energy meter in campus apartment can't recognize load automatically. At first, Dmeyer wavelet is used to decompose user's load current wave so that feature parameter of non-linear load is picked up. Secondly, three layer BP model is established. In the end, network is trained and forecasted by Levenberg-Marquardt algorithm. Results show that the load recognition method for campus apartment based on wavelet and ANN is reliable and practical, which can realize modem and automatic management about student's apartment, and is important to avoid fire troubles.

关 键 词:小波分析 BP神经网络 L-M算法 非线性负载 

分 类 号:TM76[电气工程—电力系统及自动化] TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象