检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2009年第1期13-17,22,共6页Control and Decision
基 金:国家973计划项目(2004CB720703)
摘 要:针对模糊辨识中采用迭代和人为决策法确定模糊规则数时易受噪声和人为因素的影响,而导致算法鲁棒性较差和计算量较高的问题,提出一种基于改进客观聚类分析的模糊辨识方法.首先引入并改进了客观聚类分析法,克服了迭代导致的规则数冗余,降低了人为因素对聚类结果的影响,从而减小了计算量并提高了鲁棒性;然后结合模糊聚类和稳态卡尔曼滤波法,分别辨识了前提和结论参数;最后通过Box-Jenkins仿真实例验证了所提方法的有效性.In fuzzy identification, iterations or human decision making are usually used to identify fuzzy rules. However, the clustering result is possibly affected by noise and artificial factor, which results in weak robustness and high computation cost. In this paper, a fuzzy identification method based on the enhanced objective cluster analysis is presented. Firstly, the objective cluster analysis algorithm is introduced and enhanced such that the redundant rule numbers caused by iterations is overcomed and the effect of human factor on the clustering result is decreased. Therefore, the computation burden is reduced, and the robustness of the algorithm is improved. Then, the premise parameters and the consequence parameters are identified by fuzzy c-means clustering algorithms and the stable Kalman filter algorithm respectively. The effectiveness of the proposed method is verified by the example of BoxJenkins gas furnace simulation.
关 键 词:模糊辨识 客观聚类分析 稳态卡尔曼滤波 模糊聚类
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62