基于概率投票策略的多类支持向量机及应用  被引量:12

Multi-class SVMs Based on Probability Voting Strategy and Its Application

在线阅读下载全文

作  者:王晓红[1,2] 

机构地区:[1]九江大学江西省数字控制技术与应用重点实验室,九江332005 [2]大连理工大学电子与信息工程学院,大连116024

出  处:《计算机工程》2009年第2期180-183,共4页Computer Engineering

基  金:国家自然科学基金资助项目(50705039)

摘  要:传统的支持向量机是基于两类问题提出的,如何将其有效地推广至多类分类仍是一个研究的热点问题。在分析比较现有支持向量机多类分类OVO方法存在的问题及缺点的基础上,该文提出一种新的基于概率投票策略的多类分类方法。在该策略中,充分考虑了OVO方法中各个两类支持向量机分类器的差异,并将该差异反映到投票分值上。所提多类支持向量机方法不仅具有较好的分类性能,而且有效解决了传统投票策略中存在的拒分区域问题。将基于概率投票的多分类支持向量机作为关键技术应用于实际齿轮箱故障诊断,并与传统投票策略的结果进行对比,表明所提方法的上述优点。Traditional Support Vector Machine(SVM) is originally designed for binary classification. How to effectively extend it to multi-class Classification is still an on-going research issue. After analysis and comparison of the problems and defections of the existing One-Versus-One(OVO) methods of multi-class SVMs, the novel multi-class classification method based on probability voting strategy is put forward. In the new strategy, the differences and different weights among these two-class SVM classifiers are considered and combined with the value of voting. The presented multi-class SVMs method can achieve the better classification ability and resolve the unclassifiable region problems in the conventional Max-Wins-Voting(MWV) strategy. Moreover, the multi-class SVMs method based on probability voting is used as the key technology of fault diagnosis for gearbox. The practical results show that compared with traditional MWV strategy, the presented one is effective.

关 键 词:支持向量机 多类分类 概率 故障诊断 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象