检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信与控制工程学院,江苏无锡214122
出 处:《控制工程》2009年第1期70-72,共3页Control Engineering of China
基 金:国家自然科学基金资助项目(60674092);江苏省高技术研究(工业)基金资助项目(BG2006010)
摘 要:支持向量机中参数的寻优一般只针对惩罚系数和核参数,而混合核的引入,使支持向量机(SVM)又多了一个可调参数,而这个可调参数一般是根据经验或人工随机调试得到,不能确保该参数为最优。针对此问题,提出以惩罚系数、核参数以及混合核可调参数为寻优目标,用混沌粒子群(CPSO)对其进行综合寻优的方法,来寻找满足条件的最优参数组合,从而提高模型的精度。通过对工业双酚A生产过程软测量建模的仿真研究表明,混合核参数优化后的模型比普通模型效果要好,泛化能力有所提升。The parameters optimization of support vector machine (SVM)usually applies to penalty parameter and kernel parameter. However, with the introduction of mixed kernels, SVM has one more adjustable parameter. This parameter is used to be gotten manually or by experience and it could be not the best one. In order to find the optimal parameters and improve the model precision, the parameters of mixed kernels of SVM are selected by chaotic particle swarm optimization(CPSO). The application in the soft sensor modeling of BPA shows that this method has better generalization ability.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15