检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳农业大学,沈阳110161 [2]沈阳工程学院,沈阳110136
出 处:《轴承》2009年第2期53-57,共5页Bearing
基 金:水利部“948”科技创新项目(CT200516);辽宁省教育厅科技公关项目(05L385)
摘 要:为了预测锅炉给水泵轴承温度的变化情况,提高给水泵运行的安全性和经济性,采用了统计学习理论中的核心算法——支持向量机,建立了给水泵温度预测模型(SVAR)。并通过一个实例,与基于灰色方法建立的预测模型(GM)和基于自回归方法建立的预测模型(AR)进行了比较。结果表明:基于支持向量自回归的给水泵轴承温度预测模型具有精度高、速度快、易于建模的特点。应用该方法建立的预测模型能够很好地预测给水泵运行中的温度状况,有效地避免给水泵运行中出现的故障。In order to forecast the temperature state of water feeding pump bearings and increase the operating safety and economy of water feeding pump, the kernel algorithm of Statistical Learning Theory ( SLT), Support Vector Machine ( SVM), is applied to set up a forecast model of water feeding pump bearing temperature. The model based on SVAR is compared with the model based on Gray Model and the model based on Autoregressive by a case. The result indicate that the forecast model of water feeding pump bearing temperature based on SVAR have many advantage, such as high precision, high calculation velocity, modeling easily. The model based on SVAR can forecast the bearing temperature condition of water feeding pump in operation, and avoid the fault due to the bearing temperature variety.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3