检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院上海微系统与信息技术研究所,上海200050
出 处:《系统仿真学报》2009年第2期576-580,共5页Journal of System Simulation
基 金:国家863计划项目(2006AA01Z216)
摘 要:提出了一种新的高斯Cost-Reference粒子滤波器算法及多传感器动态协同策略用于无线传感器网络目标跟踪问题。该算法的显著特点是:(1)鲁棒性,不需要事先对系统过程噪声和测量噪声的分布进行精确建模,具有较好的噪声自适应能力,非常适用于无线传感器网络未知的、复杂的应用场景;(2)能量有效性,该算法采用高斯分布来近似状态的后验概率分布,节点间交互时只需要传输高斯分布的均值和方差,而不需要传输所有的粒子及其权值,极大地减轻了网络通信负载,能有效延长网络的寿命。A new Gaussian Cost-Reference particle filtering algorithm and associated multi-sensor dynamic collaboration scheme were proposed for target tracking applications in wireless sensor networks (WSN). The new collaborative tracking algorithm has two absorbing features: (1) robust. It does not assume explicit mathematical models of the noise probabilistic distributions common to generic particle filter. This feature is very important for WSN applications because of the environmental uncertainty and complexity. (2) energy-efficient. It approximates the posterior probabilistic distributions by single Gaussians. When handing over the tracking task from one node to another, only the Gaussian mean and covariance but not the raw particles and associated weights need to be propagated. The Gaussian approximation can observably reduce communication burden, thus the network lifetime is efficiently prolonged. Simulation part evaluated the proposed algorithm by the metrics of tracking precision and communication complexity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233