检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琪[1] 胡昌华[1] 乔玉坤[1] 蔡艳宁[1]
机构地区:[1]第二炮兵工程学院302教研室,陕西西安710025
出 处:《系统工程与电子技术》2009年第1期221-224,共4页Systems Engineering and Electronics
基 金:国家自然科学基金(60736026);教育部新世纪优秀人才支持计划资助课题
摘 要:样本贫化现象会严重影响再采样粒子滤波故障预测算法对故障的预测能力,是粒子滤波算法在故障预测应用中的一个主要障碍。针对上述问题,提出了一种基于权值选优粒子滤波器的故障预测算法。按照粒子权值的大小,从大量的粒子中选择出比较好的粒子用于滤波,以增加样本的多样性,从而缓解样本贫化问题,提高再采样粒子滤波故障预测算法的跟踪能力。仿真结果显示所提出的算法是可行的。The predicting ability of the fault prediction algorithm based on SIR particle filter will be badly influenced by sample impoverishment, which is one of the main disadvantages for the application of particle filter in fault prediction. A fault prediction algorithm based on weight selected particle filter is proposed to resolve the above problem. According to their weights, the better particles are selected from a vast amount of particles to improve the diversity of samples. As a result, the problem of sample impoverishment is ameliorated and the tracking ability of the fault prediction algorithm based on SIR particle filter is improved. Simulation results demonstrate that the fault prediction algorithm based on weight selected particle filter is feasible.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.232