检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科技导报》2009年第2期43-46,共4页Science & Technology Review
基 金:江苏省教育厅自然科学基金项目(08KJB110005)
摘 要:研究了球内带非线性对数项的拟线性椭圆方程-div(|▽u|p-2▽u)=logu+h(x)uq带纽曼边值问题解的存在性,推广了De Queiroz的相关结论,De Queiroz研究的是p=2时解的存在性。利用双摄动理论,首先对参数0<ε<1考虑一组逼近问题-div(|▽u|p-2▽u)=logεu2+uε+uε+εε+h(x)uq解的存在性。由于不能直接利用Poincaré不等式去求解上述逼近问题,所以对于每个0<r<R,定义另外一个区域ArR:=BR\Br,考虑在ArR上逼近问题解的存在性,当r→0+时可以得到逼近问题解的存在性。最后令ε→0,求出逼近问题解的极限,得到所研究问题存在一个径向的正解u∈C1(BR\{0})∩C(BR)。The nonlinear quasilinear elliptic problem -div(|△u|^p-2△u)=logu+h(x)u^q in a ball BRlelong to Rn with Neumann boundary conditions on BR are studied. For each 0 〈ε〈1, a family of ' approximate problems -div(|△u|^p-2△u)=log(u^2+εu+ε/u+ε)+h(x)u^q is considered. Then, it is natural to look for a family of solutions of this problem and then to pass the limit as ε→0 to obtain a solution to the first problem. Because we cannot use Poincare inequality to solve the second problem directly by variational methods, for each 0 〈r〈R, ArR:=BR/B^-r is defined. Consider the third family of the problem, a solution to the second problem is obtained when r→0^+. By means of a double perturbation argument, a positive radial solution u ∈C^1(B^-R/{0})∩C(B^-R) is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145