检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢真慈[1] 徐伟[1] 戎海武[2] 王宝燕[1]
机构地区:[1]西北工业大学应用数学系,西安710072 [2]佛山大学数学系,佛山528000
出 处:《物理学报》2009年第2期824-829,共6页Acta Physica Sinica
基 金:国家自然科学基金(批准号:10872165)资助的课题~~
摘 要:研究了参数激励下带有时滞反馈的随机Mathieu-Duffing方程的主参数共振响应问题.运用多尺度方法分离了系统的快慢变量.分析了系统的分岔性质,发现调谐参数、时滞、时滞项的系数以及非线性项的强度等都可以影响系统的分岔行为,适当选择这些参数可以改变系统的分岔响应.同时,还讨论了非零解的稳定性,得到了非零解稳定的充要条件,而且发现在随机激励的带宽较小时,系统的多解现象仍然存在,分岔和跳跃现象仍会发生,数值模拟验证了理论推导的有效性.We investigate the principal parametric resonance of Mathieu-Duffing Equation under a narrow-band random excitation with time delay feedback. The method of multiple scales is used to determine the equations of modulation of amplitude and phase. The bifurcation of the system is discussed. We find that the bifurcation can be influenced by the detuning parameter, time delay, and the intensity of the non-linear term, and an appropriate choice of these parameters can change the response of bifurcation. In addition the stability of nontrivial solution is studied. The nontrivial solution of necessary and sufficient condition for stability is obtained. Moreover, we find that when the bandwidth of the random excitation is smaller, the multi-solution phenomenon still exists, and bifurcation and jumping phenomenon will occur. Theoretical analysis is verified by numerical results.
关 键 词:随机Mathieu-Duffing系统 多尺度 稳定性 分岔
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222