基于统计特征的轮胎纹理缺陷在线检测  被引量:8

Defects on-line detection of tire textures based on statistical features

在线阅读下载全文

作  者:黄战华[1] 刘正[1] 朱猛[1] 蔡怀宇[1] 张尹馨[1] 

机构地区:[1]光电信息技术科学教育部重点实验室天津大学精密仪器与光电子工程学院,天津300072

出  处:《光学技术》2009年第1期60-62,66,共4页Optical Technique

基  金:国家科技支撑计划资助项目(2007BAF14B03)

摘  要:根据轮胎X光纹理缺陷区域灰度及灰度分布异常的特点,研究了一种通过分析统计特征进行在线缺陷检测的方法。在轮胎X光纹理灰度分布模型基础上,采用正则化预处理去除背景噪声,然后进行图像分块,分别计算每块的灰度均值和方差,并采用双线性插值运算形成均值图像和方差图像,再通过二值化实现缺陷检测。实验表明,与人工检测方法进行对比,该方法误判率低,检测精度高,并且运算速度快,能满足在线检测要求。According to the abnormality of gray mean and gray distribution of defect region in tire X-ray texture images, an approach based on analysis of statistical teatures is proposed to implement on-line detection ot texture defects. Based on the gray distribution model of tire X-ray texture, the background noise of image is eliminated by normalization preprccessing. Image is divided into blocks, and then gray mean and variance of each block are computed. The mean image and variance images are formed by bilinear interpolation operation. At last, defect detection is achieved by binary processing of mean image and variance image. Compared to traditional manual detecting, experimental results show that lower rate of ntis-detection, higher precision and speed are achieved by this method to meet the demand of on-line detection.

关 键 词:纹理缺陷 统计特征 正则化 二值化 在线检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象