横观各向同性材料三维裂纹问题的数值分析  被引量:4

Three-dimensional numerical analysis of cracks in transversely isotropic materials

在线阅读下载全文

作  者:陈梦成[1] 

机构地区:[1]华东交通大学土木工程学院,南昌330013

出  处:《计算力学学报》2009年第1期109-113,119,共6页Chinese Journal of Computational Mechanics

基  金:国家自然科学基金(10132020;10302022)资助项目

摘  要:严格从三维横观各向同性材料弹性空间问题的Green函数出发,采用Hadamard有限部积分概念,导出了三维状态下单位位移间断(位错)集度的基本解。在此基础上,将三维任意形状的片状裂纹问题归结为求解一组以未知位移间断表示的超奇异积分方程;并给出了边界元离散形式。对方程中出现的超奇异积分,采用了Had-amard定义的有限部积分来处理。论文最后给出了若干典型片状裂纹问题的数值算例,数值结果表明了本文方法是非常有效的。In this paper, isotropic materials, the Hadamard' s finite-part with arbitrary shape in started rigorously from Green functions for elastic space problems of transversely fundamental solutions for a displacement-jump (dislocation) were derived by integral concepts. Subsequently,the problem of a three-dimensional planar crack an infinite transversely isotropic solid was reduced to the solution of a set of hyper-singular integral equations with unknown displacement jumps. Discretization of the boundary element method on the crack surfaces was discussed. The hyper-singular integrals in the equations were numerically treated by the use of Hadamard's finite-part integral concepts. Finally,some numerical examples of typical-shaped planar crack problems were given and the effectiveness of the analysis was validated.

关 键 词:横观各向同性 弹性体 三维片状裂纹 超奇异积分方程 边界元 

分 类 号:O343[理学—固体力学] U270.351[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象