检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学计算机与信息技术学院信息科学研究所,北京100044
出 处:《信号处理》2009年第2期233-237,共5页Journal of Signal Processing
基 金:国家自然科学基金项目(60672062;60472033);国家"九七三"重点基础研究发展规划项目(2004CB318005)
摘 要:随着人机交互技术的发展,情感计算成为一个研究热点。局部保留映射(LPP)是一种最优的保持数据集局部结构的一种线性映射,它的特点是保留了样本的局部结构,但是它没有考虑判别信息,从而容易引起类间距离小的类别之间的重叠。本文提出了基于线性判别的局部保留映射(DLPP)算法并将其应用到表情识别问题中。与LPP相比,DLPP的改进之处在于将判别分析的思想引入LPP。同时考虑样本间的相邻关系和模式类之间的相邻关系,从而得到能正确分类的最优投影方向。在Yale人脸库和JAFFE表情库中的一系列表情识别实验结果表明,DLPP对于人脸表情识别更为有效。Due to the development of human-computer interaction,there has been much interest in facial recognition. Locality Preserving Projections (LPP) is a linear projection that arises by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP is designed for preserving local structure, but it fails to take account of the discriminant information. Thus, Discriminant Locality Preserving Projections (DLPP) is presented in this paper, and it' 11 be applied to facial expression recognition problem. The improvement of DLPP algorithm over LPP is that discriminant analysis has been introduced into LPP algorithm. By consid- ering both the neighborhood structure of the samples and the neighborhood of the classes ,we obtain an optimal projecting direction which can classify the samples more efficiently. A series of experiments were performed on Yale and JAFFE face databases and the result shows that DLPP is more efficient for facial expression recognition problem.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.128.223