检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2009年第4期1056-1058,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(6067215760672158)
摘 要:针对源信号增多导致语音信号稀疏性变差的问题,提出一种新的基于稀疏性的混合矩阵估计方法,利用主分量分析(PCA)检测只有一个源信号存在的时频点并用于估计混合矩阵,从而提高了估计性能,特别适用于欠定语音盲分离。同时指出了影响基于稀疏性语音盲分离方法性能的因素。仿真结果验证了上述结论。A new sparseness-based method was proposed for mixing matrix estimation, in the case of poor sparseness of speech signals with increasing number of sources. The time-frequency bins with only one souree were detected by Principal Component Analysis ( PCA), and then were exploited to estimate the mixing matrix to improve the estimation performance. The proposed method is especially applicable to underdetermined blind speech separation. The reasons deteriorating the performance of blind speech separation were also pointed out. The simulation results demonstrate the conclusions above.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15