检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学(威海)数学系
出 处:《黑龙江大学自然科学学报》2008年第6期719-730,共12页Journal of Natural Science of Heilongjiang University
基 金:Supported by the National Natural Science Foundation of China(10671047);the Project of Science Research Foundation(HITC 200713)
摘 要:一般来说,大多数随机偏微分方程并不存在显式解,因此,数值方法是研究这类方程解的性质的十分有效的工具。应用半隐式欧拉方法求解一类随机森林发展方程,从而得到其近似解,并证明了当满足一些比线性增长条件和全局利普希茨条件弱的条件时,半隐式欧拉格式将依概率收敛于方程的解析解,其收敛阶为p=12.In order to approximate the solutions of a class of stochastic forest evolution equations, a numerical method will be given. In general, the explicit solutions of most of stochastic partial differential equations do not exist, so numerical methods are invaluable tools for us to explore their properties. This paper is to show that under some conditions which are weaker than linear growth condition and global Lipschitz condition, the semi - implicit Euler scheme converges to the analytic solutions of the stochastic forest evolution equations in probability. Then we get the order of convergene p=1/2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222