检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟娇茹[1]
机构地区:[1]黑龙江科技学院电气与信息工程学院,哈尔滨150027
出 处:《黑龙江科技学院学报》2009年第1期50-53,共4页Journal of Heilongjiang Institute of Science and Technology
摘 要:针对目前航空发动机孔探检测不能对损伤类型自动识别现状,将支持向量机与孔探检测技术相结合,提出基于支持向量机(SVM)的损伤图像识别方法。该方法将损伤图像进行二值化分割,利用链码跟踪及灰度共生矩阵分别提取损伤区域的形状特征和纹理特征,组成多维特征向量,输入支持向量机进行分类识别。分类器设计阶段,组建性能优越的二叉树支持向量机以减少训练样本,提高分类效率。CFM56发动机实验结果表明:该方法的识别性能明显优于传统SVM多分类器和BP神经网络方法。Targeted at the failure of most of the current aero-engine borescopic inspection system to identify the kind of interior damages automatically, this paper introduces a new damage recognition method which combines support vector machine (SVM) with borescopic inspection technology. The method consists of converting the damage image to a binary image, extracting five shape features and four texture features from the chain-code and gray-level co-occurrence matrix of the image respectively and putting these features into SVM to carry out automatic classification of damages. The design of the classifier involves the development of a high-performance binary tree-SVM which decreases the number of training sample and improves the efficiency of SVM. CFM56 aero-engine shows a higher recognition accuracy than traditional SVM multi-class method and BP neural network method.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229