航空发动机孔探损伤识别方法  被引量:3

Aero-engine interior damage recognition based on support vector machine

在线阅读下载全文

作  者:孟娇茹[1] 

机构地区:[1]黑龙江科技学院电气与信息工程学院,哈尔滨150027

出  处:《黑龙江科技学院学报》2009年第1期50-53,共4页Journal of Heilongjiang Institute of Science and Technology

摘  要:针对目前航空发动机孔探检测不能对损伤类型自动识别现状,将支持向量机与孔探检测技术相结合,提出基于支持向量机(SVM)的损伤图像识别方法。该方法将损伤图像进行二值化分割,利用链码跟踪及灰度共生矩阵分别提取损伤区域的形状特征和纹理特征,组成多维特征向量,输入支持向量机进行分类识别。分类器设计阶段,组建性能优越的二叉树支持向量机以减少训练样本,提高分类效率。CFM56发动机实验结果表明:该方法的识别性能明显优于传统SVM多分类器和BP神经网络方法。Targeted at the failure of most of the current aero-engine borescopic inspection system to identify the kind of interior damages automatically, this paper introduces a new damage recognition method which combines support vector machine (SVM) with borescopic inspection technology. The method consists of converting the damage image to a binary image, extracting five shape features and four texture features from the chain-code and gray-level co-occurrence matrix of the image respectively and putting these features into SVM to carry out automatic classification of damages. The design of the classifier involves the development of a high-performance binary tree-SVM which decreases the number of training sample and improves the efficiency of SVM. CFM56 aero-engine shows a higher recognition accuracy than traditional SVM multi-class method and BP neural network method.

关 键 词:航空发动机 损伤识别 特征提取 支持向量机 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象