检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学电子工程系,北京100081 [2]北京邮电大学,北京100088
出 处:《光学技术》2009年第2期288-291,共4页Optical Technique
摘 要:独立分量分析(Independent component analysis,ICA)作为一种有效的盲源分离方法,其目的是从由传感器收集到的混合信号中分离出相互独立的源信号,使得这些分离出来的信号之间尽可能的相互独立。针对红外线列扫描图像,提出了一种基于ICA的图像增强方法,该方法能够有效地去除红外线列扫描图像的非均匀性干扰。阐述了ICA的基本原理,介绍了基于负熵判据的FastICA算法,给出了该方法的具体实现步骤及相应的实验处理结果。结果表明,利用该方法能够达到图像增强的目的。The Independent Component Analysis(ICA) is a kind of effective blind source separation methods, which aims to separate the independent source signals from the mixed signals, making the output signals to be mutually independent as far as possible, from the collects of signals observed. A method of infrared line-scan image processing based on ICA is presented, which can remove effectively the uneven interference of the image. The principle of ICA and a FastICA algorithm based on negentropy criterion is introduced. The detailed processes of the method and results are given, which show that the method can realize the aim of enhancing image.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.72.31