检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001 [2]哈尔滨工业大学数学系,黑龙江哈尔滨150001
出 处:《中国舰船研究》2009年第1期29-32,共4页Chinese Journal of Ship Research
基 金:国家自然科学基金(50575048);黑龙江省博士后资助项目(LBH-205052)
摘 要:船舶在系泊或低航速状态下,发动机主机停止工作,船舶失去自控方向能力,船体随波浪左右摇晃,比航行时摇摆更为剧烈。因此,研究零航速减摇鳍非常重要。文章研究零航速时仿生减摇鳍产生升力的模型,其基础为Weis-Fogh机构理论。首先讨论如何旋转才能产生给定的升力。依据吕卡提方程理论,给出模型周期解的存在性和稳定性条件;采用单步Runge-Kutta方法求出模型的数值解,给出保证数值解稳定的条件。The engine of ships is laid off at anchor. Ships drift with wave and loss the capacity of controlling navigating direction for self, so the roll is increased and severer than shipping state. It is important to study stabilizer when a ship is at zero speed. In this paper we study the llft model of fin stabilizer that based on potential theory of the Weis-Fogh mechanism when a ship is at zero speed. Firstly, we discussed that Weis-Fogh mechanism how to rotate to generate the lift that has been given. According to the theory of Riccati differential equation, conditions that assure the existence and stability of period solution are given. Then, using Runge-Kutta methods, the numerical solution of the model is obtained. Finally we give the conditions that assure the numerical solution is stable. The results are closely matched with numerical experiments.
关 键 词:减摇鳍 零航速 吕卡提方程 周期解 稳定性 仿生学
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73