检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学(A辑)》2009年第3期267-293,共27页Science in China(Series A)
基 金:国家自然科学基金(批准号:10731070);教育部博士点基金(编号:20060246003)资助项目
摘 要:证明同调有界的连通微分分次代数(简称为DG代数)上的紧致DG模的ampli-tude与基代数的amplitude的差恰为该DG模的投射维数.由此可得非平凡的正则DG代数是同调无界的.对正则DG代数A,若它的同调代数H(A)是分次Koszul代数,则证明H(A)有有限的整体维数;如果把条件减弱为A是Koszul DG代数,则给出了一个H(A)的整体维数为无限的例子.对一般的正则DG代数A,给出了其为Gorenstein DG代数的一些等价刻画.对同调有限维的连通DG代数A,证明由紧致对象全体构成的三角范畴Dc(A)和Dc(Aop)存在Auslander-Reiten三角当且仅当A和Aop都是Gorenstein DG代数.当A是非平凡的正则DG代数,且H(A)是局部有限维时,Dc(A)不存在Auslander-Reiten三角.对正则DG代数A,转而讨论了Auslander-Reiten三角在Dlbf(A)以及Dlbf(Aop)上的存在性.
关 键 词:微分分次代数 Gorenstein微分分次代数 正则微分分次代数 Koszul微分分次代数 紧致微分分次模 Auslander-Reiten三角 amplitude投射维数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3