检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
出 处:《Science China Mathematics》1995年第11期1377-1386,共10页中国科学:数学(英文版)
基 金:the State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
摘 要:The experimental results indicate that the Ni-ZrO2 composites synthesized with urn-sized Ni powder and nm-sized ZrO2 powder possess submicron structure. Based on the fractal theory, the relationship between the electric and thermal conductance and the chemical composition of the composites has been studied. The results show that with the increase of the nickel content, the electric and thermal conductance of the composites varies. It is proposed that in the submicron structured composites, electrons and phonons have different transport mechanisms. The electric transport in the submicron-structured composites can be attributed to the medium punch-through effect and quantum tunnel punch-through effect of electrons and the low thermal conductance is due to the phonic scattering by the submicron-sized pores, grains and grain boundaries. The reason can also be used to explain why the thermal percolation threshold value lags behind the electric percolation value. The phenomenon has been observed.The experimental results indicate that the Ni-ZrO2 composites synthesized with urn-sized Ni powder and nm-sized ZrO2 powder possess submicron structure. Based on the fractal theory, the relationship between the electric and thermal conductance and the chemical composition of the composites has been studied. The results show that with the increase of the nickel content, the electric and thermal conductance of the composites varies. It is proposed that in the submicron structured composites, electrons and phonons have different transport mechanisms. The electric transport in the submicron-structured composites can be attributed to the medium punch-through effect and quantum tunnel punch-through effect of electrons and the low thermal conductance is due to the phonic scattering by the submicron-sized pores, grains and grain boundaries. The reason can also be used to explain why the thermal percolation threshold value lags behind the electric percolation value. The phenomenon has been observed.
关 键 词:SUBMICRON structure electronic PUNCH-THROUGH effect phonic scattering ABNORMAL resonance.
分 类 号:TB331[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15