检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学计算机科学与技术学院教育部符号计算与知识工程重点实验室,长春130012 [2]徐州师范大学计算机科学与技术学院,徐州221116
出 处:《计算机工程》2009年第7期14-16,31,共4页Computer Engineering
基 金:国家自然科学基金资助重点项目(60433020,60673099,60773095);国家“863计划”基金资助项目(2007AA04Z114);“985”工程基金资助项目“计算与软件科学科技创新平台”;教育部符号计算与知识工程重点实验室基金资助项目
摘 要:针对传统支持向量聚类的低性能和高耗费问题,提出最小二乘支持向量聚类(LSSVC)模型,设计自适应参数化方案。模型中包括两步簇划分算法和快速训练算法。前者对支持向量和非支持向量分别进行划分,后者采用增量方式,每次增量对应聚类模型的双向学习过程。实验结果证明,LSSVC可有效提高同类算法的效率,具有良好聚类能力,当数据增量为工作集大小的10%时,算法可在时间耗费和聚类准确率之间取得良好的平衡。Aiming at the bottleneck of poor performance and expensive consumption of traditional Support Vector Clustering(SVC), this paper proposes Least-Square Support Vector Clustering(LSSVC) model, and designs self-adaptive parameterization strategies. The model includes a new cluster labeling algorithm and fast training approach. The cluster labeling algorithm clusters Support Vectors(SVs) and non-SVs respectively. The fast training approach is implemented in incremental learning process, and after each data's increment, a double-way learning procedure is conducted to adjust clustering model. Experiments demonstrate the improvement of LSSVC over its counterparts in efficiency and its competitive performance. And when the size of incremental data is 10% of the working set, it can balance cost and clustering accuracy well.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3