检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yue Qing WANG Hong Ke DU Yan Ni DOU
机构地区:[1]Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 400042, P. R. China [2]College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2009年第4期679-686,共8页数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China (10871224)
摘 要:Using the technique of block-operators, in this note, we prove that if P and Q are idempotents and (P - Q)^2n+1 is in the trace class, then (P - Q)^2m+1 is also in the trace class and tr(P - Q)^2m+1 = dim(k(P) ∩ k(Q)^⊥) -dim(k(P)^⊥ N k(Q)), for all m ≥ n. Moreover, we prove that dim(k(P)∩ k(Q)^⊥) = dim(k(P)^⊥ ∩k(Q)) if and only if there exists a unitary U such that UP = QU and PU = UQ, where k(T) denotes the range of T. Keywords Fredholm, orthogonal projection, positive operatorUsing the technique of block-operators, in this note, we prove that if P and Q are idempotents and (P - Q)^2n+1 is in the trace class, then (P - Q)^2m+1 is also in the trace class and tr(P - Q)^2m+1 = dim(k(P) ∩ k(Q)^⊥) -dim(k(P)^⊥ N k(Q)), for all m ≥ n. Moreover, we prove that dim(k(P)∩ k(Q)^⊥) = dim(k(P)^⊥ ∩k(Q)) if and only if there exists a unitary U such that UP = QU and PU = UQ, where k(T) denotes the range of T. Keywords Fredholm, orthogonal projection, positive operator
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7