On the Index of Fredholm Pairs of Idempotents  被引量:1

On the Index of Fredholm Pairs of Idempotents

在线阅读下载全文

作  者:Yue Qing WANG Hong Ke DU Yan Ni DOU 

机构地区:[1]Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 400042, P. R. China [2]College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第4期679-686,共8页数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (10871224)

摘  要:Using the technique of block-operators, in this note, we prove that if P and Q are idempotents and (P - Q)^2n+1 is in the trace class, then (P - Q)^2m+1 is also in the trace class and tr(P - Q)^2m+1 = dim(k(P) ∩ k(Q)^⊥) -dim(k(P)^⊥ N k(Q)), for all m ≥ n. Moreover, we prove that dim(k(P)∩ k(Q)^⊥) = dim(k(P)^⊥ ∩k(Q)) if and only if there exists a unitary U such that UP = QU and PU = UQ, where k(T) denotes the range of T. Keywords Fredholm, orthogonal projection, positive operatorUsing the technique of block-operators, in this note, we prove that if P and Q are idempotents and (P - Q)^2n+1 is in the trace class, then (P - Q)^2m+1 is also in the trace class and tr(P - Q)^2m+1 = dim(k(P) ∩ k(Q)^⊥) -dim(k(P)^⊥ N k(Q)), for all m ≥ n. Moreover, we prove that dim(k(P)∩ k(Q)^⊥) = dim(k(P)^⊥ ∩k(Q)) if and only if there exists a unitary U such that UP = QU and PU = UQ, where k(T) denotes the range of T. Keywords Fredholm, orthogonal projection, positive operator

关 键 词:FREDHOLM orthogonal projection positive operator 

分 类 号:O175.5[理学—数学] O152.7[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象