检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学计算机学院,湖南长沙410073
出 处:《计算机工程与科学》2009年第5期27-30,共4页Computer Engineering & Science
基 金:国家973计划资助项目(2002CB312105);国家863计划资助项目(2006AA01Z309)
摘 要:传统的基于拓扑分析方法的特征可视化系统的扩展性、通用性和交互性较差。本文分析了流场的特征,在此基础上提出了一种基于BP神经网络的可选择智能流场特征提取方法,设计了一种三层BP神经网络结构,用户可以对感兴趣的新特征进行选取并进行训练和提取,而无须修改程序。该方法利用神经网络较强的非线性映射能力,提高了系统的扩展性、通用性和交互性。基于上述方法,设计并实现了一个流场可视化原型系统。实验表明,该方法对流场任意特征具有高识别率和较低的误警率、漏报率。Feature-based visualization of flow is an important field of scientific visualization. The traditional visualization system based on topology analysis of the flow field does not have scalability, generality and good interaction. Based on the flow feature analysis, this paper presents a selective and intelligent flow feature extraction method. We design a three-lay- ered BP neural network, and the user can select the new feature region they are interested iru Using the strong non-linear ability of the neural network, we are successful in improving the system's scalability, generality and interaction. Finally, we introduce a demonstration system based on the above methods, and the test shows that this method has a high recognition rate and a low error-calling rate.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112