检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李伟[1]
出 处:《集美大学学报(自然科学版)》2009年第2期195-197,共3页Journal of Jimei University:Natural Science
摘 要:在Mcshane积分的LSRS收敛定理中建立了M-积分的LSRS收敛定理,并证明了该定理的条件比Lebesgue积分的控制收敛定理条件弱.本文首先证明一个引理,进一步证明了定理1,由此阐述了Mcshane积分的LSRS收敛定理中的定理比Lebesgue积分中Vitali收敛定理条件更弱,从而使Vitali定理成为LSRS定理的推论.On the basis of LSRS convergence theorem of Mcshane integral, LSRS convergence theorem of M-integral was proved. It was found that the conditions of the theorem were much weaker than those of control convergence theorem in Lebesgue integral. First, lemma was proved, then theorem 1 was proved, and so that Vitali theorem became a corollary of LSRS theorem.
关 键 词:MCSHANE积分 LEBESGUE积分 Vitali收敛定理 LSRS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15