检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李骞[1] 冯金富[1] 彭志专[1] 鲁卿[1] 梁晓龙[1]
出 处:《系统仿真学报》2009年第9期2531-2533,2538,共4页Journal of System Simulation
摘 要:针对粒子滤波中得到优化的重要性密度函数比较困难的问题,将迭代扩展卡尔曼滤波和序贯融合与粒子滤波相结合,应于雷达和红外多传感器目标融合跟踪。利用基于迭代扩展卡尔曼滤波的序贯融合算法得到的系统状态更新矩阵和误差协方差矩阵来构造粒子滤波的重要性密度函数,使重要性密度函数能够融入最新观测信息的同时,更加符合真实状态的后验概率分布。仿真结果表明基于序贯融合的迭代扩展卡尔曼粒子滤波(IEK-PF)能提高状态估计的精度。A technique for fusing data from radar/infrared Multi-sensor was developed to track maneuvering target. Modified Iterated Extend Kalman Particle Filter is simple yet very effective in accounting for the measurement nonlinearities. The idea of fusion is to combine IEK-PF with pseudo sequential filter to obtain optimum state estimates. The main idea uses the system state transition matrix and the error covariance matrix which are gained from the IEKE and the sequential fusion to construct the importance density function of the particle filter. So the importance density function can integrate the latest observation into system state transition density, and the proposal distribution can approximate the posterior distribution reasonably well. The simulation results show that this technique can overcome the flaw that it is hard to get the optimization importance density function in the particle filter and significantly improve the accuracy of state estimation.
关 键 词:机动目标跟踪 序贯融合 重要性密度函数 迭代扩展卡尔曼粒子滤
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.81.94