检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉科技大学计算机科学与技术学院,湖北武汉430081
出 处:《计算机工程与设计》2009年第8期1960-1962,1973,共4页Computer Engineering and Design
摘 要:为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objective optimizes multiclass SVM based on AUC)算法。该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过低问题,因为在多类分类学习中任何一个两类分类的AUC值太低,都会影响整体学习的效果。实验结果表明,提出的优化方法改进了算法的学习能力,取得了较好的学习效果。In order to effectively apply AUC (area under the ROC curve) to do evaluation in multi-class SVM learning, an algorithm MOSMAUC (multi-objective optimizes multi-class SVM based on AUC) is proposed, where AUC is used as the evaluation criterion, multi-objective optimization is used to optimize learning parameters, since the low value of any AUC will decrease the learning performanee in the multi-class learning algorithm. Experimental results show the effectiveness of the proposed algorithm.
关 键 词:支持向量机 ROC曲线下面积 多目标优化 多类分类学习 PARETO最优解
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104