检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何胜[1,2] 潘瑜[1] 吴访升[1] 黄纯国[1]
机构地区:[1]江苏技术师范学院计算机科学与工程学院,江苏常州213001 [2]江南大学生物工程学院,江苏无锡214122
出 处:《计算机工程与设计》2009年第8期1963-1965,1968,共4页Computer Engineering and Design
基 金:江苏技术师范学院青年科研基金项目(KYY06081)
摘 要:全面学习微粒群优化算法使用所有其它粒子的历史最好信息来更新粒子速度的策略改进标准微粒群算法,虽然一定程度避免陷入早熟,然而也存在到算法后期收敛速度急剧变慢的问题。采取兼顾粒子搜索范围和收敛速度方法并引入自适应的策略监视算法过程,当算法陷入停滞,即重新初始化,更新粒子系统,用复杂组合测试函数进行测试,表明了改进算法的有效性。Comprehensive learning particle swarm optimizer (CLPSO) is studied, which uses a learning strategy whereby all other particles' historical best information to update a particle's velocity, has improved the standard PSO and has avoided premature convergence to some extent. However, during the late stages of algorithm, the convergence speed has deeply declined. Particle's searching scope and convergence speed are taken into consideration and the self-adapting strategy is used to monitor the process of algorithm, once it comes to a standstill, the whole particle's system is reinitialized and updated. The effectiveness is demonstrated through several experiments that are performed using composition test functions.
关 键 词:优化 微粒群 CLPSO SA—CLPSO 组合测试函数
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28