检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连工业大学信息科学与工程学院,辽宁大连116034
出 处:《大连工业大学学报》2009年第1期66-68,共3页Journal of Dalian Polytechnic University
摘 要:针对一类用于解决分类问题的模糊感知器,提出完全随机输入的模糊δ-规则,并给出训练样本模糊可分的定义。实例表明,利用该算法可以有效地解决模糊可分样本的分类问题,在有限步迭代后就达到收敛,即有限步训练后网络能将所有样本正确分类。A fuzzy δ-rule training algorithm was proposed for a fuzzy perceptron, in which the training patterns were totally random inputted. A fuzzily separable definition for training patterns were presented. Numerical experiments showed that fuzzy perceptron based on fuzzy δ-rule training algorithm could effectively solve the classification problems for fuzzily separable training patterns, and the algorithm is finitely convergent, i. e. , the training patterns could be correctly classified by the net after fi- nite steps of iterating.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112