检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东北农业大学学报》2009年第4期106-110,共5页Journal of Northeast Agricultural University
基 金:中国博士后基金(20070410833);黑龙江省博士后资助项目(LBHZ_07233);东北农业大学博士启动基金资助项目
摘 要:文章基于机器视觉,通过图像获取系统得到大豆的表面颜色特征,应用SAS对大豆表面颜色特征进行LOGISTIC回归后,应用BP神经网络对大豆进行标准粒与细菌斑点病粒的分类。经过网络训练后,选用收敛效果好的网络对数据进行仿真预测,共计160粒,其中标准大豆80粒,细菌斑点病80粒。得到的测试识别率为:标准大豆96.3%、大豆菌斑粒98.8%。本研究为大豆菌斑粒的在线识别提供了一定的依据,有利于实现大豆的在线缺陷粒检测。Machine vision has been widely used on detecting and determining defection. Spots on soybean caused by bacteria were inspected with this technology. Nine soybean color properties (R, G, B, H, S, V, G/B, G/ R, R/B) were extracted by computer from digital images. After analyzing these traits by logistic regression with statistics analysis system, BP Neural Network was used to distinguish normal soybean seeds and spotted ones,160 ones in total. The rate for normal soybeans was 96.3%, and for spotted ones was 98.8%. The research results provide a foundation for soybean online identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46