高光谱图像高维多尺度自回归有监督检测  被引量:5

Supervised Detection for Hyperspectral Imagery Based on High-dimensional Multiscale Autoregression

在线阅读下载全文

作  者:贺霖[1] 潘泉[2]  李远清[1] 

机构地区:[1]华南理工大学自动化科学与工程学院,广州510640 [2]西北工业大学自动化学院,西安710072 [3]普度大学西拉法叶校区遥感应用实验室,IN,USA 47907-2045

出  处:《自动化学报》2009年第5期509-518,共10页Acta Automatica Sinica

基  金:国家自然科学基金重点项目(60634030);国家自然科学基金(60825306,60475004);航空科学基金(2006ZC53037);武器装备预研基金(51401040204HK0359);教育部新世纪人才基金(NCET-04-0816);教育部高等学校博士学科点专项科研基金(200805611063);广东省自然科学基金研究团队资助项目(04205783)资助~~

摘  要:给出一种有监督检测算法以检测高光谱图像中的区域目标.为利用高光谱图像中的空间尺度维信息,在高光谱图像多尺度观测不同相连节点之间建立高维多尺度自回归模型,并利用四叉树节点间的多阶马尔可夫性和高维多尺度回归噪声先验概率密度与高维观测条件概率密度的等价性及其多元t分布特性,构造出适用于检测高光谱图像中区域目标的空间多尺度自回归有监督检测算法.理论分析及实验中的5种评价方法的结果均表明该检测器可有效检测出高光谱图像中的目标区域.A supervised detection algorithm is presented to detect the target region in hyperspectral imagery. In order to utilize the spatial scale information in hyperspectral data, the multiscale observation of hyperspectral imagery of different connected nodes at different scales are described by a high-dimensional autoregressive model. Then, a highdimensional multiscale autoregression based detector to detect target region is constructed, utilizing the equality between joint distribution of various multiscale observations and that of the regression noise, and the multivariate t distribution statistics of the regression noise. Theoretical analysis and the experiment involving five performance indexes show that our detector is effective to detect target region in hyperspectral imagery.

关 键 词:高光谱图像 高维多尺度自回归 有监督检测 区域目标 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象