检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bo LIU Tianguang CHU Long WANG
机构地区:[1]College of Science, North China University of Technology, Beijing 100041, China [2]Intelligent Control Laboratory, Center for Systems and Control, College of Engineering, and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
出 处:《控制理论与应用(英文版)》2009年第2期105-111,共7页
基 金:supported by the National Natural Science Foundation of China (No.60674047, 60674050, 60528007);National 863 Program (No.2006AA04Z247,2006AA04Z258);11-5 project (No.A2120061303);SRFDP (No.20060001013);the Doctoral Fund and Youth Key Fund of North China University of Technology
摘 要:This paper studies a non-reciprocal swarm model that consists of a group of mobile autonomous agents with an attraction-repulsion function governing the interaction of the agents. The function is chosen to have infinitely large values of repulsion for vanishing distance between two agents so as to avoid occurrence of collision. It is shown analytically that under the detailed balance condition in coupling weights, all the agents will aggregate and eventually form a cohesive cluster of finite size around the weighted center of the swarm in a finite time. Moreover, the swarm system is completely stable, namely, the motion of all agents converge to the set of equilibrium points. For the general case of non-reciprocal swarms without the detailed balance condition, numerical simulations show that more complex self-organized oscillations can emerge in the swarms. The effect of noise on collective dynamics of the swarm is also examined with a white Gaussian noise model.This paper studies a non-reciprocal swarm model that consists of a group of mobile autonomous agents with an attraction-repulsion function governing the interaction of the agents. The function is chosen to have infinitely large values of repulsion for vanishing distance between two agents so as to avoid occurrence of collision. It is shown analytically that under the detailed balance condition in coupling weights, all the agents will aggregate and eventually form a cohesive cluster of finite size around the weighted center of the swarm in a finite time. Moreover, the swarm system is completely stable, namely, the motion of all agents converge to the set of equilibrium points. For the general case of non-reciprocal swarms without the detailed balance condition, numerical simulations show that more complex self-organized oscillations can emerge in the swarms. The effect of noise on collective dynamics of the swarm is also examined with a white Gaussian noise model.
关 键 词:AGGREGATION Collective behaviour Collision avoidance Complete stability Self-organized oscillation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38