检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工程大学信息与电气工程学院
出 处:《电子技术(上海)》2009年第5期61-62,共2页Electronic Technology
摘 要:短期负荷预测是电力系统调度管理部门制定开停机计划及在线安全分析的基础,为了提高电力行业经济效益和社会效益,精确的负荷预测是最重要的工作内容。近年来的研究表明,组合预测比单项预测具有更高的精度。为了提高短期负荷的预测精度,提出一种基于支持向量机的负荷非线性组合预测方法,并与BP神经网络组合预测相比较,测试结果表明了该方法的有效性与优越性。Period power system load forecasting is scheduling downtime to open the development of management plans and on-line security analysis. In order to improve the economic and social benefits of electricity industry, Accurate load forecasting is the most important work. It has been shown that combining forecasts may produce more accurate forecasts than individual ones in recent years. In order to improvethe accuracy of short-term load forecasting, this paper presents a new nonlinear composite forecasting method for load forecasting based on support vector machines. Analysis of the experimental results proved that the algorithm could achieve much effective than that of BP neutral network.
分 类 号:TM715[电气工程—电力系统及自动化] TV121[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117