基于物理模型的计算机视觉轮对踏面擦伤检测方法  被引量:7

Method of Physical-based Computer Vision Detection for Tread Surface Flats of Wheelsets

在线阅读下载全文

作  者:杨雪荣[1] 张湘伟[1] 成思源[1] 高向东[1] 

机构地区:[1]广东工业大学机电工程学院,广州510006

出  处:《机械工程学报》2009年第5期214-219,共6页Journal of Mechanical Engineering

基  金:国家自然科学基金(50775044;50805025);广东省自然科学基金(8151009001000040)资助项目

摘  要:研究一种基于计算机视觉的轮对踏面擦伤检测方法。用线结构光扫描轮对踏面,在踏面上产生相应的变形光条纹,利用电荷耦合器件(Charge coupled device,CCD)摄像机采集光条纹图像,经过图像处理后获得踏面截面轮廓,检测轮对踏面擦伤。根据光条纹的特点,提出基于物理模型的提取光条纹中心线方法,应用能量优化法,求解光条纹中心线所对应的最小能量曲线,用B样条曲线拟合光条纹中心线使其具有亚像素级定位精度,同时大大减少数据存储量。试验结果表明该方法可有效地抑制噪声、光条纹断线及分枝的影响,使光条纹中心线具有单一连通性。轮对旋转一周,通过摄像机模型计算轮对踏面的三维曲面模型,实现了轮对踏面擦伤的非接触精确检测。The method based on computer vision for fast detecting the tread surface flats of railway wheelsets is presented. The line structured light is used to scan the tread surface of wheelsets, thus producing the corresponding deformation light stripe at where it scans. To detect the tread surface fiats of wheelsets, the light stripe images collected by the charge coupled device(CCD) camera are processed to get the outline of the tread surface of wheelsets. Based on the characteristics of the light stripe, a new method based on physical model for extracting the center line of light stripe is proposed. Using the energy optimization method, the sub-pixel B-spline center of light stripe can be found when energy is minimized, while greatly reducing the volume of data storage. The proposed approach extracts strips central points at subpixel accuracy successfully and restrains noise, broken lines and divarication efficiently. The center line of light stripe is with a single connectivity. With the rotation of wheelsets, the three-dimensional surface model can be obtained through camera model, thereby realizing non-contact detection of the tread surface fiats ofwheelsets.

关 键 词:轮对踏面 擦伤 物理模型 B样条 

分 类 号:U260.331[机械工程—车辆工程] TP391[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象