利用循环相关特征的自适应模糊调制分类  

Adaptive Fuzzy Classincation of Modulation Using Cyclic Correlation Feature

在线阅读下载全文

作  者:陈筱倩[1] 王宏远[1] 柯志武[1] 

机构地区:[1]华中科技大学电子信息工程系,武汉430074

出  处:《应用科学学报》2009年第3期226-230,共5页Journal of Applied Sciences

基  金:国家自然科学基金(No.60475024)资助项目

摘  要:针对非平稳数字调制信号,提出一种高阶正交循环累量特征,具有"屏蔽"干扰和噪声的特性.采用模糊神经网络非线性动态建模的调制识别器,根据特征训练样本的大致分布状况建立蕴涵初始经验的模糊推理系统结构,再嵌入神经网络的结构和自适应学习算法对模糊系统参数进行调整和优化,完成模糊神经网络模型的逼近求精.对MASK, MPSK,MFSK,MQ.AM等信号进行仿真实验,结果表明系统在信嗓比等环境参数变化较大的情况下适应性和容错性良好.相对于神经网络等识别器,具有初始经验的系统结构更明确,建模周期较短,算法识别率和效率有明显提高.For non-stationary digitally modulated signals, a high definition feature, high order cyclic cross cumulant (HOCCC) for is proposed to suppress interference and noise. A novel modulation classifier based on nonlinear dynamic fuzzy neural networks (FNN) is presented. According to the general distribution of the feature samples, we establish a fuzzy inference system with initial experiences, embed the structure and self-adaptive training of the neural network to adjust and optimize the fuzzy system parameter, and complete approximation of the fuzzy neural network modeling. For MASK, MPSK, MFSK and MQAM, simulation results show better adaptability and fault-tolerance of the system at a variety of environment parameters such as SNR. The system with initial experiences possesses a short modeling phase, and can improve average probability of correct classification and efficiency compared to neural network classifiers.

关 键 词:调制识别 高阶正交循环累量 模糊神经网络 模糊推理 自适应 

分 类 号:TN971.1[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象