一种发现模糊关联规则的FTDA2算法  被引量:1

FTDA2 Algorithm for Finding Fuzzy Association Rule

在线阅读下载全文

作  者:钱增瑾[1] 徐欢[1] 鞠时光[1] 

机构地区:[1]南京理工大学研究生院,南京210094

出  处:《计算机工程》2009年第11期52-54,共3页Computer Engineering

基  金:国家"863"计划基金资助项目(2002AA412020)

摘  要:模糊关联规则在模糊集理论的基础上发现关联规则,频繁项集挖掘是数据挖掘的关键问题。Apriori算法在查找频繁项集时,需要对数据库进行多次扫描,通过模式匹配检查一个很大的候选集合,降低了算法执行效率。针对该问题提出FTDA2算法,该算法对事务数据库进行一次扫描,记录对计算频繁项集支持度有贡献的事务。比较FTDA2算法与其他算法,通过实验证明其有效性。Fuzzy association rules finds association rules based on fuzzy set theory. Frequent items mining is the key problem in data mining. When frequent sets is being searched in Apriori, database needs to be scanned several times, and a large candidate set is checked through pattern matching. The algorithm running efficiency is reduced. Aiming at this problem, this paper proposes Fuzzy Transaction Data-mining Algorithm 2(FTDA2). This algorithm scans database once, and record the transactions, which contribute to the support of frequent set. It compares FTDA2 to other algorithms, and proves its validity by experiment.

关 键 词:模糊集 关联规则 事务 数值型属性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象