检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学机械电子工程系,河北秦皇岛066004
出 处:《系统工程与电子技术》2009年第5期1133-1137,共5页Systems Engineering and Electronics
基 金:国家自然科学基金(50775198);河北省教育厅博士基金(B2004128)资助课题
摘 要:为解决故障诊断中单一方法难于处理大规模、多变量数据信息的问题,提出了一种利用主元分析方法和粗糙集理论相结合的多变量决策树构造方法。该方法利用主元分析对历史数据进行降维、去噪处理,得到由主元变量组成的决策信息。通过粗糙集理论中核属性和相对泛化的概念对此决策信息进行属性选择和样本集划分,构造出多变量决策树,并建立诊断规则知识库。基于汽轮机发电机组的轴系振动故障分析的实例验证了此方法的正确性,与其他方法相比较具有规模小、诊断规则易于提取的特点。In order to solve the problem that a single method is difficult to deal with large scale, multi varia ble data in fault diagnosis, a multi-variable decision tree construction method combining principal component analysis with rough set theory is proposed. Firstly, the method uses principal component analysis to make dimension reduction and remove noises for the historical data and attempts to get the decision-making information that consists of principal component variables. Secondly, the method presents attribute selection and sample set measure for the decision-making information by nuclear properties and relative generalization concept in the rough set theory to construct multi variable decision tree, on this basis, establishes diagnosis rules repository. Finally, by use of a shafting vibration fault analysis example on steam turbine generator units, the validity is demonstrated. Compared with other methods, this method has the advantages of small scale and is easy to extract diagnosis rules.
关 键 词:故障诊断 多变量决策树 主元分析 粗糙集 模糊聚类 诊断规则
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28