检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李秀卿[1] 汪海 许传伟 许峰 赵丽娜[1] 孟庆然[1] 刘大为
机构地区:[1]东北电力大学电气工程学院,吉林吉林132012 [2]齐齐哈尔供电公司,黑龙江齐齐哈尔161005 [3]黑河供电公司,黑龙江黑河164300 [4]长春供电公司,吉林长春130000
出 处:《电力系统保护与控制》2009年第11期36-39,49,共5页Power System Protection and Control
摘 要:提出了一种基于免疫遗传算法(IGA)的BP神经网络方法计算配电网的理论线损。该算法在遗传算法(GA)的基础上引入生物免疫系统中的多样性保持机制和抗体浓度调节机制,有效地克服了GA算法的搜索效率低、个体多样性差及早熟现象,提高了算法的收敛性能。为了解决BP神经网络权值随机初始化带来的问题,用多样性模拟退火算法(SAND)进行神经网络权值初始化,并给出了算法详细的设计步骤。仿真结果表明,同混合遗传算法相比,该算法设计的BP神经网络具有较快的收敛速度和较强的全局收敛性能,比现有其它计算配电网理论线损的方法更为准确。A new method of designing BP neural networks based on immune genetic algorithm (IGA) is proposed for calculating line losses in distribution systems. The mechanisms of diversity maintaining and antibody density regulation exhibited in a biological immune system are introduced into IGA based on genetic algorithm (GA). The proposed algorithm overcomes the problems of GA on search efficiency, individual diversity and premature and enhances the convergent performance effectively. In order to solve the problem of random initial weights, simulated annealing algorithm for diversity is used to initialize weight vectors, and the detailed design steps of the algorithm are given. Simulated results show that the BP neural networks designed by IGA have better performance in convergent speed and global convergence compared with hybrid genetic algorithm and that the method is more accurate than other ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81