检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南科技大学电子信息工程学院,河南洛阳471003
出 处:《计算机工程与应用》2009年第18期205-208,共4页Computer Engineering and Applications
基 金:国家自然科学基金No.60475021;河南省杰出青年基金(No.0412000400)~~
摘 要:目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大。结合改进遗传算法的神经网络方法,采用将结构与误差结合的适应度函数,改进的遗传算子实现对BP网络结构和权值的同步优化。提出一种用改进遗传算法优化后的BP神经网络进行物体识别,并以提取的修正不变矩特征作为BP神经网络的输入,仿真结果表明该方法提高了识别的稳定性和收敛性能,并且识别率较高。从而验证了该方法的有效性。Algorithms for recognition are cnmplcx,and the information and computation are large at present.Neural network based on improved genetic algorithm adopts fitness function of combining structure and error and the improved genetic operator to implement the optimization of structure and weights of BP network simultaneity.To recognize objections,BP neural network based on improved genetic algorithm is proposed in the paper,and the improved invariant moments extracted are regarded as the imput of BP network.The simulation results indicate that the method improves the stability and convergence capability of recognition.Moreover,the recognition rate is very high.So the efficiency is proved in the paper.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222