检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘文远[1] 李建飞[1] 王宝文[1] 于家新[1]
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《生物信息学》2009年第2期95-98,共4页Chinese Journal of Bioinformatics
基 金:国家自然科学基金(60474065;60671025)
摘 要:k-均值聚类算法是一种广泛应用于基因表达数据聚类分析中的迭代变换算法,它通常用距离法来表示基因间的关系,但不能有效的反应基因间的相互依赖的关系。为此,提出基于信息论的k-modes聚类算法,克服了以上缺点。另外,还引入了伪F统计量,一方面,可以对空间中有部分重叠的点进行有效的分类;另一方面,可以给出最佳聚类数目,从而弥补了k-modes聚类法的不足。使其成为一种非常有效的算法,从而达到较优的聚类效果。K- means clustering algorithm is an iterative transformation algorithm which is widely applied in gene expression data clustering analysis, it measures the relationship between genes by distance, but which can not reflect the interdependence relationship of genes effectively. For this, an attribute clustering algorithm - k - modes based on information theory was proposed, which overcomes the demerits mentioned above. In addition, we have also introduced pseudo F - statistics, on the one hand, some of the overlapping points in space realizes effective classification; on the other hand, it can give the best clustering number, thereby making up for the shortage of k - modes clustering method. All of these merits made the proposed method very effective to achieve optimum clustering effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222