检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西北大学学报(自然科学网络版)》2009年第1期14-21,共8页
基 金:陕西省自然科学基金资助项目(SJ08A24)
摘 要:为研究连续函数列{fi}的动力性状和极限函数厂的动力性状之间的关系,引入强一致收敛的概念,在函数列{fi}强一致收敛于厂的条件下,证明了函数列{fi}的极小性,拓扑传递性,拓扑弱混合性,拓扑混合性,都可以遗传到f上;并且还得出函数列{fi}的Li-Yorke混沌集(非游荡集)和f的Li-Yorke混沌集(非游荡集)之间的包含关系。最后得出结论:通过对函数列{fi}的动力性状的研究,可以刻画出厂的动力性状。In order to investigate the relationship between a sequence of continuous functions {fi} and its limit function f on dynamical behavior. Introducing the concept of strong uniform convergence is introduced. The minimality, transitivity, weak mixing, and mixing possessed by {fi} that can be inherited to fare proved, as well as the inclusion relationship between Li-Yorke's chaos (non-wandering) set of {fi} andfis gained under the condition of a sequence of continuous functions {fi} strong converges uniformly toil The conclusion is the dynamical behavior of the limit function f can be described through investigating a sequence of continuous functions {fi}.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.113.219