基于DGA的BP神经网络及其在一维河网模拟中的应用  被引量:3

BP Neural Network based on DGA and its application in one-dimensional river network simulation

在线阅读下载全文

作  者:辛小康[1] 肖洋[1] 朱晓丹 曹刚[1] 吕升奇[1] 

机构地区:[1]河海大学水利水电工程学院,江苏南京210098 [2]上海市水务工程设计研究院有限公司,上海200063

出  处:《水利水电科技进展》2009年第3期9-13,共5页Advances in Science and Technology of Water Resources

基  金:国家自然科学基金(50879020);广东省交通厅重点科技项目(2008-19)

摘  要:考虑到BP神经网络的计算精度和稳定性依赖于初始权、阈值,首先对标准遗传算法进行改进,然后用改进的遗传算法优化BP神经网络的初始权、阈值。将遗传算法和神经网络结合起来建立河网BP模型,把实测资料或者水动力数学模型的计算结果作为学习样本对模型进行训练。将河网BP模型运用于西江三角洲河网,发现该模型与水动力模型的计算结果吻合较好,表明优化后的BP网络用于河网水力模拟是可行的。Back propagation neural networks (BPNN) are non-linear, self-adaptive and high-speed, and therefore can be used in complicated river network simulation. Considering that the precision and stability of BPNN depend on initial weights, some improvements are made on the standard genetic algorithm. Then, with the developed genetic algorithm(DGA), the initial weights of BPNN are optimized. A BP model for a river network is presented by combining generic algorithm and BPNN. The model is trained with the measured data and a hydrodynamic module. The model was used to simulate the river network of the Xijiang Delta. Sound agreement was obtained between the results of the BP model and those of the hydrodynamic module, which suggests that the BP model is particularly suited for hydraulic simulation of river networks.

关 键 词:遗传算法 BP神经网络 BP模型 河网模拟 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象