检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院电子信息工程系,山东烟台264001 [2]海军工程大学兵器工程系,湖北武汉430033 [3]海军武汉军代局701代表室,湖北武汉430000
出 处:《信号处理》2009年第6期973-976,共4页Journal of Signal Processing
基 金:国防重点实验室基金项目资助(51444060101JB1108)
摘 要:针对船舶噪声信号为实的非平稳信号的特点,使用二阶非平稳统计量的方法对传感器阵列所接收到的信号进行了盲分离。首先对原始信号进行了稳健正交化处理,同时根据信号的非平稳性,采用分段加窗的方法求取时滞协方差矩阵,将正交分离矩阵的求解转化为时滞协方差矩阵的联合近似对角化,并最终转化为子空间拟合问题,最后通过Gauss-Newton发进行求解。文中较为详细的给出了针对非平稳实信号的二阶统计量盲分离算法的基本步骤。最后对三艘实测的船舶噪声信号所进行的盲分离仿真试验表明,该算法具有较快的收敛速度和较好的分离效果。Due to the nonstationary of ship noise, the sensor array signals were separated blindly by second-order nonstationary statistic algorithm. Firstly, the original signals were pre-processed by robust orthogonalization algorithem, and then for the nonstationary of signals, the time-lag covariance matrixes of the pre-processed signals are gotten by segmenting and windowing. The solution to the or- thogonalizing separating matrix was transformed as the diagonalization of time-lag covariance matrixes. At last this problem became a subspace fitting question wbieh could be resolved via Gauss-Newton algorithem. The derivation of algorithm to the nonstationary real sig- nal was given. The simulation experiment for separating the three practical ship noises shows the fast convergence rate and good separa- ting effect of the algorithm.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56