检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2009年第7期1927-1929,共3页journal of Computer Applications
基 金:广东省自然科学基金资助项目(07010869;032356);广东省江门市科技攻关项目(江财企[2006]59号)
摘 要:二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的"小样本"效应,支持向量机(SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽略高频分量;然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用"一对多"的SVM多类分类算法完成人脸识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。"Small sample size" problem of LDA algorithm can be overcome by two-dimensional LDA (2DLDA), and Support Vector Machine (SVM) has the characteristic of structural risk minimization. In this paper, two methods were combined and used for face recognition. Firstly, the original images were decomposed into high-frequency and low-frequency components by Wavelet Transform (WT). The high-frequency components were ignored, while the low-frequency components can be obtained. Then, the liner discriminant features were extracted by 2DLDA, and "one vs rest", strategy of SVMs for muhiclass classification was chosen to perform face recognition. Experimental results based on ORL (Olivetti Research Laboratory) face database and Yale face database show the validity of 2DLDA + SVM algorithm for face recognition.
关 键 词:小波变换 二维线性鉴别分析 支持向量机 人脸识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248