检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信与控制工程学院,江苏无锡214122
出 处:《系统工程与电子技术》2009年第6期1446-1449,共4页Systems Engineering and Electronics
基 金:国家自然科学基金项目资助课题(60574051)
摘 要:将多新息辨识理论用于研究CARMA模型的参数估计问题。首先用估计残差来代替信息向量中的不可测噪声项,导出了CARMA模型的增广随机梯度算法,进一步把标量新息推广为新息向量,导出了相应的多新息增广随机梯度辨识算法,并利用鞅收敛定理分析了多新息增广随机梯度算法的收敛性。最后的仿真结果验证了该算法的有效性。The parameter estimation problem of CARMA models is studied by using the multi-innovation identification theory. The basic idea is to obtain the extended stochastic gradient algorithm by replacing the unmeasurable noise terms in the information vector with the estimated residuals and to derive the multi-innovation extended stochastic gradient (ESG) algorithm by expanding the scalar innovation to an innovation vector. The convergence properties of the proposed multi-innovation ESG algorithm are analyzed by using the martingale convergence theorem. The simulation example indicates that the multi-innovation ESG algorithm is effective.
关 键 词:参数估计 多新息辨识 随机梯度 收敛性 鞅收敛定理
分 类 号:O211.64[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49