检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州大学物理与电子工程学院,广东广州510006 [2]广东教育学院物理系,广东广州510303
出 处:《发光学报》2009年第3期293-296,共4页Chinese Journal of Luminescence
基 金:supported by the Foundation of National Natural Science(10874122)~~
摘 要:由于量子环特殊的结构,我们尝试过不少方法,发现一般传统方法很难求解薛定谔方程,故很难求出它的波函数和能级。国内外很多学者从事这方面的研究,但发表的文献非常少。有必要寻找一些新的方法从事这方面的研究工作,本文中采用了B样条函数近似拟合波函数的方法,计算了一个在谐振子束缚势和磁场作用下含有杂质的二维量子环中的电子能级。研究了电子能级随磁场强度、束缚势的变化关系以及电子能级与量子环半径的关系。我们发现电子能级随磁场强度、束缚势强度的增强而增强;每一个能级都有一个最小值在特定的量子环半径上,并且随着能级的增加,最小值的位置向半径大的方向偏移。Because the complex structure of Quantum Ring, it is difficult to solve the Schrodinger equation, so it is uncertain to comfirm the energy levels and wave function. Many scholars have worked on this problem, but they have few papers on this problem. It is necessary to seek another method to solve this problem. The energy levels of a two dimensional quantum ring with an impurity in parabolic confinement under magnetic field is calculated by the B-spline functions. The dependency of the energy levels on the strength of magnetic field and ring radius is studied. We found that there is a minimum for each of the energy levels at certain ring radius. And the position of the minimum shifts to the direction of larger radius as the excited energy levels increasing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143