检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学信息工程学院,山西太原030024
出 处:《太原理工大学学报》2009年第4期345-347,352,共4页Journal of Taiyuan University of Technology
基 金:国家自然科学基金(60472094);山西省自然科学基金(20051039)
摘 要:针对传统的RBF网络求取隐层基函数中心的K-均值聚类算法的缺点,利用遗传算法的全局搜索性能,将遗传算法用于RBF网络的训练过程。由于简单遗传算法存在收敛速度慢及不能收敛到全局最优解等不足,引入自然数编码的自适应遗传算法,加快网络的训练速度。将该算法应用到语音识别系统中,实验结果表明:使用该方法的识别结果优于使用K-均值聚类算法选取质心的RBF网络的识别结果。This paper trained RBF neural network using genetic algorithms, which has global search characteristic, in order to overcome shortage of traditional K-mean clustering algorithm applied in learning the central vectors of hidden layers in RBF neural network. It introduced natu- ral number coding adaptive genetic algorithms to speed up training speed of the network because simple genetic algorithm has the disadvantages of slow convergence speed and being unable to converge to the optimum solution. The experimental results show that the recognition results of improved algorithm are better than those of RBF network using K--mean clustering algorithm in learning the central vectors of hidden layers.
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49