基于自适应聚焦粒子群算法的电力系统无功优化  被引量:14

Reactive power optimization in power system based on adaptive focusing particle swarm optimization

在线阅读下载全文

作  者:刘述奎[1] 陈维荣[1] 李奇[1] 林川[2] 段涛[1] 

机构地区:[1]西南交通大学电气工程学院,四川成都610031 [2]西南交通大学信息科学与技术学院,四川成都610031

出  处:《电力系统保护与控制》2009年第13期1-6,共6页Power System Protection and Control

基  金:国家自然科学基金(60870004);西南交通大学博士生创新基金(2007-3)~~

摘  要:自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法。通过采用AFPSO算法,对电力系统进行无功优化。该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性。Adaptive focusing particle swarm optimization (AFPSO) based on the balance characteristic between global search and local search of particle swarm optimization is an adaptive swarm intelligence optimization algorithm with preferable ability of global search and search rate. AFPSO is proposed to optimize the reactive power optimization. Based on optimal control principle, AFPSO applied for optimal reactive power is evaluated on an IEEE 30-bus power system. The modeling of reactive power optimization is established by taking the minimum network losses as the objective. The simulation results and the comparison results with various optimization algorithms demonstrate that the proposed approach converges to better solutions much faster than the earlier reported approaches and the algorithm can make effectively use in reactive power optimization. Simultaneously, the validity and superiority of AFPSO is proved.

关 键 词:电力系统 自适应聚焦粒子群算法 无功优化 群体智能 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象