检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张元元[1] 吴晓娟[1] 李秀媛[1] 阮秋琦[2]
机构地区:[1]山东大学信息科学与工程学院,山东济南250100 [2]北京交通大学信息科学研究所,北京100044
出 处:《智能系统学报》2009年第3期264-269,共6页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60675024)
摘 要:提出了一种满足一定约束条件的与视角无关的步态识别算法.首先给出了与视角无关步态特征的定义及约束条件,进而探讨了在单目平行线约束下空间点的坐标重建方法,利用相应的坐标转换因子可以从拍摄到的二维图像恢复出关键点的空间三维坐标.然后将人体建模成一个相互连接的三棍模型,利用这种坐标重建方法可以恢复出模型的参数,并定义了由模型参数表示的步态特征向量,即与视角无关的步态特征.理论推导和实验结果表明,这种方法在理想情况下能克服视角因素的影响.虽然得到的正确识别率不高,但它提供了多种视角交叉进行识别的可能性.This paper proposes a novel gait recognition algorithm that is independent of viewpoints under certain constraints. First, we described the definition of the proposed gait feature and its constraints. Then we discussed a coordinate reconstruction method for spatial points under the constraints of monocular parallel lines. With this we could employ the relevant coordinate conversion factor to recover 3D coordinates of some key points from 2D monocular camera images. The human body was modeled and simplified as three connected sticks, and the parameters of that model were estimated using the proposed reconstruction method. Thus, we obtained viewpoint-independent gait features represented by those parameters. Both theoretical calculations and experimental results revealed that the proposed gait features partially avoid the influence of viewpoint under ideal circumstances. Though correct classification rates are not high enough, it provides a useful tool for the identification of human gaits at arbitrary viewing angles.
关 键 词:单目摄像机 平行线约束 三维重建 视角无关 步态识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.108.184